

Variable single-roller burnishing tool

Technical details	
Application	shafts, contours, recess grooves, plane surfaces
Standard fixture	square shank 20/25/32/40 mm
Swiveling range	±90° in 15°-steps adjustable
Radius (R)	2 mm

Variable single-roller burnishing tool for smoothing and hardening internal and external contours.

Options

- Fixtures VDI, HSK etc.
- Tailor made rollers for eg. carbide

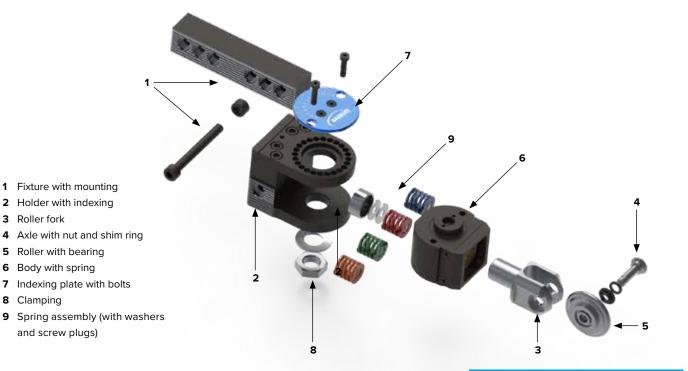
ADVANTAGES

- Adjustable angle for various contours
- Optimal design of the rollers for profile machining
- Universally applicable due to compact design

Examples of Fixtures and others

Application parameters

Please note that this information represents standard values which must be adapted to the individual cases.


which must be adapted to the individual cases.	
Speed	up to 200 m/min
Feed rate	0.05-0.3 mm/rev
Workpiece allowance	up to 0.02 mm
Tool preload	up to 1mm
Lubrication	emulsion or oil; filtration of the lubricant (< 40 $\mu m)$ can improve the surface quality and the tool life
Pre-machining of workpiece	surface roughness (R_z) up to 15 μm
Workpiece hardness	up to 45 HRC

© BAUBLIES AG · 01/2020 · DE · Technische Änderungen vorbehalten.

Tool assembly/handling and replacing components

POSITIONING THE ROLLER:

1 Fixture with mounting 2 Holder with indexing

5 Roller with bearing 6 Body with spring

and screw plugs)

3 Roller fork

8 Clamping

Remove the bolts (7) from indexing plate. Loosen clamping (8 / SW24) until the housing (6) can be adjusted.

Adjust angle (1 graduation mark = 15°) Fix the adjustment with bolts. Tighten clamping.

MODIFYING THE TOOL PRELOAD

(see classification force-spring deflection):

ATTENTION!

The roller fork is spring loaded!

a) Changing the spring

- (Factory setting, red spring mounted. Including 2x1 mm discs, discs are not assembled (see classification force spring deflection). Remove the bolts (7) from indexing plate, loosen clamping (8 / SW24), swivel housing (6). Remove screw plugs (9) and change spring assembly/washers (9).
- b) Depending on the requirements, mount the required compression spring incl. washer(s) using the classification forcespring deflection.

REPLACING COMPONENTS:

Replacing roller:

Remove axle (4) with nut and shim ring. Remove roller with bearing (5). Replace roller with bearing. Install axle and nut. Pay attention to the max. torque of 2-2.5 Nm. A suitable torque wrench is available for mounting the roller.

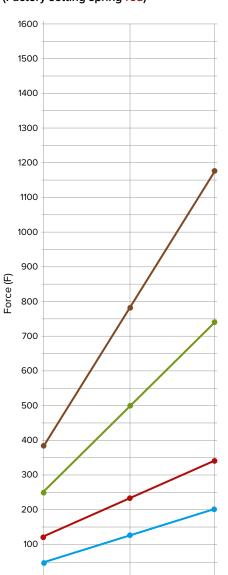
NOTE

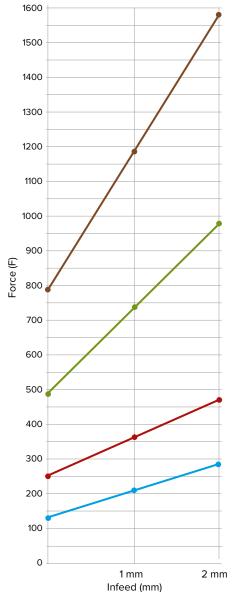
The occuring forces can be very high! For safety reasons always ensure a sufficient clamping of the tool on your machine.

ATTENTION!

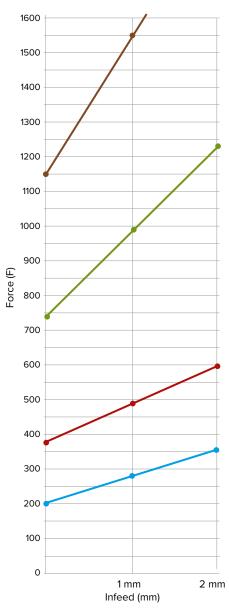
The roller fork is spring loaded! The roller fork (3) is not to be disassembled until the spring assembly (9) has been removed and thus the tool is laid-back.

TIPP


- The preload (factory setting) of the tool during burnishing should be in a range between 0.1 and 0.5 mm
- Coolant must be used at any time
- Avoid interrupted cuts
- For a basic setting of the center height we recommend using the single roller tool max. 0.3 mm above the turning centre.



Classification Force-Spring Deflection


Classification Force - Spring Deflection (Factory setting spring red)

Classification Force – Spring Deflection one disc = 1 mm monted

Classification Force – Spring Deflection two discs = 2 mm monted

Without disc

Force	Spring
70 (N)	soft
120(N)	medium
250 (N)	hard
390 (N)	very hard

1 mm

Infeed (mm)

One disc = 1 mm

Force	Spring
130 (N)	soft
250 (N)	medium
490 (N)	hard
790 (N)	very hard

Two discs = 2 mm

Force	Spring
200 (N)	soft
370 (N)	medium
740 (N)	hard
1170 (N)	very hard

2 mm